Circle Formulas

$$
\begin{aligned}
\text { Circumference } & =2 \cdot \pi \cdot \text { radius }=\pi \cdot \text { diameter } \\
\text { Circle Area } & =\pi \cdot r^{2}=\frac{1}{4} \cdot \pi \cdot \mathrm{~d}^{2}
\end{aligned}
$$

Volume :- Area \times Thickness
Weight :- Volume X density
Sphere Formulas
Sphere Surface Area $=4 \cdot \pi \cdot r^{2}=\pi \cdot d^{2}$
Sphere Volume $=4 / 3 \cdot \pi \cdot r^{3}=\left(\pi \cdot d^{3}\right) / 6$
Weight :- volume x density

Rectangular Prisms (or Solids)

The above figure is called a rectangular prism. Volume $=$ length \times width \times height
Area of Face 'A' $=$ height \times width
Area of Face ' B ' $=$ height \times length
Area of Face 'C' $=$ width \times length
Weight $=$ volume \times density

Cylinder Formulas

Surface Area $=\left(2 \cdot \pi \cdot r^{2}\right)+(2 \cdot \pi \cdot r \cdot$ height $)$
Where $\left(2 \cdot \pi \cdot r^{2}\right)$ is the surface area of the "ends" and ($2 \cdot \pi \cdot r \cdot h e i g h t$) is the lateral area (the area of the "side").

$$
\frac{\text { Volume }=}{} \frac{\pi \cdot r^{2} \cdot \text { height }=\frac{1}{4} \cdot \pi \cdot d^{2} \cdot \text { height }}{\text { Weight }=\text { volume } \times \text { density }}
$$

